Time-like proton form factors measurement with PANDA

Małgorzata Sudol Gumberidze Univ Paris-Sud/CNRS IPN Orsay, France

Proton form factors

France **June 2010** Gumberidze, 2010. MENU Malgorzata Lontières rsay

Proton form factors

Electric and Magnetic Sachs FFs

$$G_{E}(q^{2}) = F_{1}(q^{2}) + \tau F_{2}(q^{2})$$

$$G_{M}(q^{2}) = F_{1}(q^{2}) + F_{2}(q^{2})$$

$$\tau = \frac{q^{2}}{4M_{N}^{2}}$$

Phragmen Lindeloef theorem:

Space like

$$\lim_{q^2 \to -\infty} G_{E,M}(q^2) = \lim_{q^2 \to +\infty} G_{E,M}(q^2)$$

pQCD asymptotic behavior of nucleon FFs France

Malgorzata Gumberidze,

frontlières

rsay

201

 $G_M(q^2) \sim F_1(q^2) \sim \frac{\alpha_s^2}{q^4}$ $G_E(q^2) \sim \frac{\alpha_s^2}{q^4}$ $at \ q^2 \sim \infty$

 $\frac{G_E(q^2)}{G_M(q^2)} \sim constant$

Vanishing of the phase of time like FFs

Present situation of the proton form factors in space like and time like regions

Space like

- > Separation between G_{F} and G_{M}
- Contradictory results from the Rosenbluth and recoil proton polarization methods

France

Gumberid

Malgorzata

Time like

- > No individual determination G_{E} and G_{E}
- > Assume $G_E = G_M$
- \succ Few data available at high q²

Experimental situation in time like region

angular distributions from **BABAR**

rance

Tumberidze,

Malgorzata

sau

June 201

Need for more precise data !!

FAIR, Facility for Antiproton and Ion Research at Darmstadt, Germany

GSI, Darmstadt

- heavy ion physics
- nuclear structure
- atomic and plasma physics

FAIR: New facility

PANDA

- heavy ion physics & nuclear structure
- atomic, plasma and applied physics
- higher intensities & energies
- antiproton physics

rance

Jumberidze.

Malgorzata

FAIR, Facility for Antiproton and Ion Research at Darmstadt, Germany

See plenary talk of U. Wiedner on Friday

GSI, Darmstadt

- heavy ion physics
- nuclear structure
- atomic and plasma physics

FAIR: New facility

PANDA

- heavy ion physics & nuclear structure

rance

Jumberidze,

Malgorzata

CINS

- atomic, plasma and applied physics
- higher intensities & energies
- antiproton physics

HESR, High Energy Storage Ring

High luminosity mode

- ➢ Momentum range: 1.5 − 15 GeV/c
- $L = 2x10^{32} \text{ cm}^{-2} \text{ s}^{-1}$ for 10¹¹ stored anti-protons $\sigma_p/p = 10^{-4}$

High resolution mode

Momentum range: 1.5 - 9 GeV/c $L = 2x10^{31} \text{ cm}^{-2} \text{ s}^{-1}$ for 10^{10} stored anti-protons $\sigma_p/p = 2x10^{-5}$

rance

T

UND

Gumberidze,

June 201

PANDA detector

efficient event selection;

•

- good momentum resolution $\Delta p/p \approx 1\%$;
- good PID $(\gamma, e, \mu, \pi, K, p);$
- γ detection, few MeV < E_{γ} < 10 GeV

rance

umberid

Malgorzata

trontières

sau

PANDA detector

•

What PANDA will bring ?

rance

Malgorzata

frontières

sau

- > Knowledge of proton form factors up to large q^2
- Transition to QCD: asymptotic
- Reaction mechanism (1 or 2 photon exchange)

Experimental challenges

Background reactions

3 body reactions

- > Tracking in magnet, θ and φ correlations,
- Missing or invariant mass cuts, PID
- 2 charged body reactions
 - (e.g. π+π-,μ+μ-,K+K-)
- → Most important background is π + π -,
- > Kinematical correlation $p=f(\theta)$,
- PID very important,

ranc

umberi

Malgorzata

sau

Need of rejection against $\pi^+\pi^- \sim 10^{9}$

Counting rates and G_E/G_M separation

Estimates for the total cross section

rance

T

Jumberid

Malgorzata

Cultical

sau

June 201

MEN

$$|G_{E,M}| = \frac{22.5}{(1 + \frac{q^2}{0.71})^2} \cdot \frac{1}{(1 + \frac{q^2}{3.6})}$$
 fit to the TL data

~120 days;
$$L = 2 \text{ fb}^{-1}$$

q ²	# evt
$[(GeV/c)^2]$	
5.4	1100000
7.4	140000
8.2	64200
11.0	9100
12.9	3200
13.8	2000
16.7	580
22.3	81
27	22
11111111111111111111111111111111111111	

Background simulation and rejection

Using information out of EMC, STT, MVD detectors and kinematic constraints the suppression of the background channels is better than a few 10^9 .

Angular cross section

- s < 6 (GeV/c)² fitted by Legendre polynomials to the data
- > $s > 6 (GeV/c)^2$ counting rules

background from $\pi^+\pi^- < 1$ ‰ < 1% on the total cross section

Signal simulation

PANDA vs. exp data and theory

Many models have been constructed in order to fit space like data. Analytic continuation of the models to time-like region needed !

PANDA will provide good quality data which can distinguish models.

VMD: F. Iachello et al., PLB43, 171 (1973) Extended VMD, PRC66, 045501 (2002) QCD inspired >> $|G_E|=|G_M|$

France **June 201** Gumberidze, Malgorzata

sau

Effective proton form factor: world data

Effective proton form factor (G_{eff}) extracted from time like data.

$$G_{eff} \rightarrow G_E = G_M$$

With a precise luminosity measurement, one can also determine

differential cross section up to 22 (GeV/c)²

> the total cross section up to the maximum available $q^2 (q^2 = 30 (GeV/c)^2)$.

Conclusion

PANDA will enhanced knowledge on the proton time like FFs by providing information on

- \triangleright ratio of electric to magnetic FFs up to 14 (GeV/c)²
- > total cross-section up to 28 $(GeV/c)^2$

► Unphysical region can be accessed via e.g.: $\bar{p} p \rightarrow e^+ e^- \pi^0$

Possible to study reaction mechanism (1 or 2 photon exchange)
 sensitivity to odd cosθ contribution (>5%)

Malgorzata

PANDA will provide a new set of data that can be compared to the SL data in the region where asymptotic behavior of FFs might show up